Carbon/graphite material molding essentially involves increasing the density of the powder mixture and ensuring close contact between the aggregate and binder to produce a green body with a desired size, morphology, and minimal machining allowance. The four main molding methods are extrusion, compression molding, vibration molding, and isostatic pressing. Common carbon/graphite materials on the market (for example, charcoal used for household fires) are mostly formed using hot extrusion and compression molding (cold or hot). Isostatic pressing offers superior molding performance.
The principle of isostatic pressing is based on Pascal's law: pressure applied to a medium (liquid or gas) in a sealed container is uniformly distributed in all directions, with the pressure on the surface being proportional to the surface area. Isostatic pressing involves placing a sample, enclosed in a sealed container, within a high-pressure cylinder. Leveraging the incompressible nature of the liquid medium and its ability to uniformly transmit pressure, the sample is uniformly pressed from all directions. When the fluid is injected into the cylinder, the pressure is evenly transmitted in all directions according to the principles of fluid mechanics. The sample in the cylinder is then subjected to uniform pressure in all directions.
Due to the isostatic pressing method, isostatically pressed graphite exhibits excellent isotropy, with properties independent of shape, size, or sampling direction. The material possesses a dense microstructure, high mechanical strength, high surface hardness, and oxidation resistance. Strong performance and high-temperature resistance; the material has excellent thermal shock resistance and is less susceptible to cracking under rapid cooling and heating conditions.
1. Isotropy
Different molding methods result in different properties in different directions. This is primarily reflected in resistivity, thermal conductivity, mechanical properties, and thermal expansion coefficient. The general measurement method is to sample the product perpendicular to and horizontally from the pressure surface, measure the properties separately, and then divide the smallest value by the largest value to obtain the isotropy ratio.
Traditional carbon/graphite products exhibit significant anisotropy, i.e., the properties of the product are different in the directions perpendicular to and horizontal to the pressure surface. The corresponding difference in performance is generally greater than 1:1.1, hence the term anisotropy. In many cases, this difference is fully exploited, and the greater the difference, the better. Examples include graphite electrodes for steelmaking and brushes for motors. Many applications, such as EDM and single-crystal silicon thermal field applications, increasingly require carbon/graphite products to exhibit isotropy (with an orientation ratio within the 1:1.05 range).
2. Large Dimensions
The market is increasingly demanding larger product sizes. For example, single-crystal silicon products have grown from 6- and 8-inch sizes to 12-inch sizes. The size of graphite materials used in thermal fields is also increasing. This is also increasing. Similar trends are seen in other related industries. Graphite for EDM, continuous casting, and nuclear reactors also requires large-scale products. This is difficult to achieve using molding and extrusion methods. The primary problem with large-scale product production is calcination cracking, and the larger the product, the higher the chance of calcination cracking.
3. Fine Structure
As a structural material, it requires high physical and chemical properties. On the one hand, the finer the particle size of the carbon particles that make up the carbon/graphite material, the denser its texture and the higher its mechanical strength.
Isostatically pressed graphite is widely used in semiconductor manufacturing processes. It is used in graphite components for the hot zone of single crystal growth furnaces, such as crucibles, heaters, flow guides, and insulation covers; and in graphite components used in epitaxial processes.
Crezetele din grafit acoperite cu SiC sunt recipiente esențiale prelucrate cu precizie din material grafit acoperit cu carbură de siliciu, oferind o rezistență excelentă la temperaturi ridicate și rezistență la coroziune chimică. Cu performanța lor superioară și calitatea fiabilă, creuzetele de grafit acoperite cu SiC de la Semicorex sunt soluția optimă pentru a obține o producție controlată de cristale de înaltă calitate.
Citeşte mai multTrimite o anchetăTijele de grafit impregnat Semicorex sunt prelucrate pretios, sunt realizate din grafit impregnat de inalta calitate, utilizat pe scara larga in industria mecanica. Semicorex este o companie de top din China care furnizează produse din grafit de înaltă calitate.*
Citeşte mai multTrimite o anchetăSemicorex Graphite Copper Sleeve este un tip de manșon care se bazează pe propriul lubrifiant pentru lubrifiere. Produsul folosește aliaj de cupru ca material de bază, cu găuri aranjate ordonat și de dimensiuni adecvate forate în bază, iar apoi dopuri de grafit sunt încorporate în acesta. Semicorex poate furniza manșonul din cupru grafit finit sau dopuri din grafit personalizate.*
Citeşte mai multTrimite o anchetăRulmenții și bucșele din grafit de carbon Semicorex sunt fabricate din grafit de carbon de înaltă calitate, utilizat pe scară largă în industriile mecanice. Semicorex livrează produse calificate bazate pe cerințele clienților.*
Citeşte mai multTrimite o anchetăRulmenții din grafit Semicorex au mari avantaje în ceea ce privește auto-lubrifierea, rezistența la temperatură ridicată, rezistența la coroziune, lumina etc. Este aplicată pe scară largă în diverse industrii pentru funcționarea mașinilor. Semicorex se angajează să furnizeze produse calificate pentru a sprijini clienții noștri.*
Citeşte mai multTrimite o anchetăCreuza de grafit Semicorex cu proprietăți excelente este foarte bine aplicată în industria de topire. Semicorex furnizează produse personalizate de înaltă calitate, în funcție de nevoile clienților.*
Citeşte mai multTrimite o anchetă